Nylatron ${ }^{\circledR} 703$ XL Polyamide PA6 is a unique, ultra-high performance bearing grade that offers even better wear resistance than Nylatron ${ }^{\circledR}$ NSM, with superior load bearing capabilities and a near zero level of stick-slip. Due to the elimination of stick-slip, an extraordinary amount of motion control for high-precision applications is gained, which is why Nylatron ${ }^{\circledR} 703$ XL PA6 is often favored as a solution for wear pads, conveyor components, corner tracks, and pneumatic control surfaces throughout the construction and heavy equipment markets.

Note. $1 \mathrm{~g} / \mathrm{mm}^{3}=1,000 \mathrm{~kg} / \mathrm{m}^{3} ; 1 \mathrm{MPa}=1 \mathrm{~N} / \mathrm{mm}^{2} ; 1 \mathrm{kV} / \mathrm{mm}=1 \mathrm{MV} / \mathrm{m}$
NYP: there is no yield point
This table, mainly to be used for comparison purposes, is a valuable help in the choice of a material. The data listed here fall within the normal range of product properties of dry material. However, they are not guaranteed and they should not be used to establish material specification limits nor used alone as the basis of design. See the remaining notes on the next page.

Nylatron ${ }^{\circledR}$ is a registered trademark of Mitsubishi Chemical Advanced Materials

Notes, see datasheet on page 1

1. The figures given for these properties are for the most part derived from raw material supplier data and other publications.
2. Values for this property are only given here for amorphous materials and for materials that do not show a melting temperature (PBI \& PI).
3. Temperature resistance over a period of min. 20,000 hours. After this period of time, there is a decrease in tensile strength measured at $23{ }^{\circ} \mathrm{C}$ - of about 50% as compared with the original value. The temperature value given here is thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note, however, that the maximum allowable service temperature depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.
4. Impact strength decreasing with decreasing temperature, the minimum allowable service temperature is practically mainly determined by the extent to which the material is subjected to impact. The value given here is based on unfavourable impact conditions and may consequently not be considered as being the absolute practical limit.
5. These estimated ratings, derived from raw material supplier data and other publications, are not intended to reflect hazards presented by the material under actual fire conditions. There is no 'UL File Number' available for these stock shapes.
6. Most of the figures given for the mechanical properties are average values of tests run on dry test specimens machined out of rods $40-60 \mathrm{~mm}$ when available, else out of plate $10-20 \mathrm{~mm}$. All tests are done at room temperature $\left(23^{\circ} / 73^{\circ} \mathrm{F}\right)$
7. Test speed: either $5 \mathrm{~mm} / \mathrm{min}$ or $50 \mathrm{~mm} / \mathrm{min}$ [chosen acc. to ISO 10350-1 as a function of the ductile behaviour of the material (tough or brittle)] using type 1B tensile bars
8. Test speed: either $0.2^{\prime \prime} / \mathrm{min}$ or 2 "/min or [chosen as a function of the ductile behaviour of the material (brittle or tough)] using Type 1 tensile bars
9. Test speed: $1 \mathrm{~mm} / \mathrm{min}$, using type $1 B$ tensile bars
10. Test specimens: cylinders $\varnothing 8 \mathrm{~mm} \times 16 \mathrm{~mm}$, test speed $1 \mathrm{~mm} / \mathrm{min}$
11. Test specimens: cylinders $\varnothing 0.5^{\prime \prime} \times 1^{\prime \prime}$, or square $0.5^{\prime \prime} \times 1^{\prime \prime}$, test speed $0.05^{\prime \prime} /$ min
12. Test specimens: bars 4 mm (thickness) $\times 10 \mathrm{~mm} \times 80 \mathrm{~mm}$; test speed: $2 \mathrm{~mm} / \mathrm{min}$; span: 64 mm .
13. Test specimens: bars 0.25 " (thickness) $\times 0.5 " \times 5$ " ; test speed: 0.11 " $/ m i n ;$ span: $4^{\prime \prime}$
14. Measured on $10 \mathrm{~mm}, 0.4^{\prime \prime}$ thick test specimens.
15. Electrode configuration: Æ 25 / Æ 75 mm coaxial cylinders ; in transformer oil according to IEC 60296 ; 1 mm thick test specimens.
16. Measured on discs $\emptyset 50 \mathrm{~mm} \times 3 \mathrm{~mm}$.
17. Measured on $1 / 8^{\prime \prime}$ thick $\times 2$ " diameter or square
18. Test procedure similar to Test Method A: "Pin-on-disk" as described in ISO 7148-2, Load 3MPa, sliding velocity= $0,33 \mathrm{~m} / \mathrm{s}$, mating plate steel $\mathrm{Ra}=0.7-0.9 \mu \mathrm{~m}$, tested at $23^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$.
19. Test using journal bearing system, $200 \mathrm{hrs}, 118 \mathrm{ft} / \mathrm{min}, 42 \mathrm{PSI}$, steel shaft roughness 16 ± 2 RMS micro inches with Hardness Brinell of 180-200
20. Test using Plastic Thrust Washer rotating against steel, $20 \mathrm{ft} / \mathrm{min}$ and 250 PSI , Stationary steel washer roughness 16 ± 2 RMS micro inches with Rockwell C 20-24
21. Test using Plastic Thrust Washer rotating against steel, Step by step increase pressure, Test ends when plastic begins to deform or if temperature increases to $300^{\circ} \mathrm{F}$.

This product data sheet and any data and specifications presented on our website shall provide promotional and general information about the Engineering Plastic Products (the "Products") manufactured and offered by Mitsubishi Chemical Advanced Materials and shall serve as a preliminary guide. All data and descriptions relating to the Products are of an indicative nature only. Neither this data sheet nor any data and specifications presented on our website shall create or be implied to create any legal or contractual obligation.

Any illustration of the possible fields of application of the Products shall merely demonstrate the potential of these Products, but any such description does not constitute any kind of covenant whatsoever. Irrespective of any tests that Mitsubishi Chemical Advanced Materials may have carried out with respect to any Product, Mitsubishi Chemical Advanced Materials does not possess expertise in evaluating the suitability of its materials or Products for use in specific applications or products manufactured or offered by the customer respectively. The choice of the most suitable plastics material depends on available chemical resistance data and practical experience, but often preliminary testing of the finished plastics part under actual service conditions (right chemical, concentration, temperature and contact time, as well as other conditions) is required to assess its final suitability for the given application.

It thus remains the customer's sole responsibility to test and assess the suitability and compatibility of Mitsubishi Chemical Advanced Materials' Products for its intended applications, processes and uses, and to choose those Products which according to its assessment meet the requirements applicable to the specific use of the finished product. The customer undertakes all liability in respect of the application, processing or use of the aforementioned information or product, or any consequence thereof, and shall verify its quality and other properties.

